November 2020

Type 92B Pressure Reducing Valve

• Extended Diaphragm Service Life

- Two-Path Control
- Elevated Actuator
- Resilient Seats
- Bellows Stem Guide
- Double Post Stem Guide

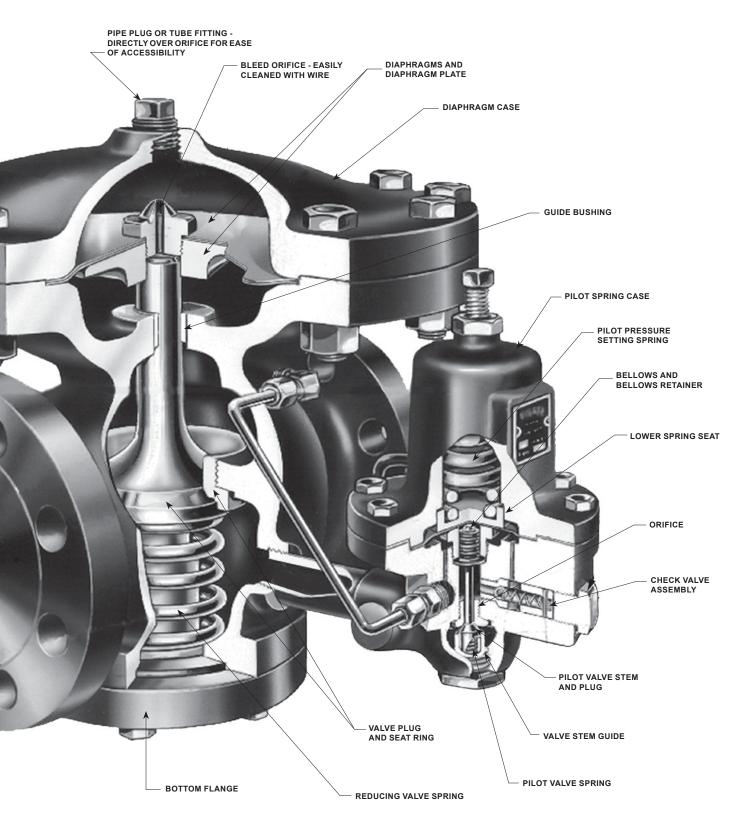
Figure 1. Type 92B Pressure Reducing Valve

Introduction

The Type 92B Pressure Reducing Valve is the standard steam valve for industry. The Type 92B is designed to provide decades of continuous service. It can withstand dirty operating environments while providing accurate and stable pressure control. The Type 92B is applied as a main Pressure Reducing Valve in industrial process heating applications such as heat exchangers, evaporators, digesters and reactors. Commercial applications include Pressure Reducing Valves for meter runs found in district energy systems, hot water heat exchangers, absorption chillers and boiler deaerator tanks.

The Type 92B is rated for inlet pressure up to 300 psig / 20.7 bar and inlet temperatures to 600°F / 316°C. Maximum controlled outlet pressure is 250 psig / 17.2 bar. A large actuator and heavy main spring ensures high accuracy and stability over its entire steam flow range.

A safety override pilot is available for the Type 92B pressure reducing valve. The Type 92B pilot is used in a series installation with the Type 6492HM safety override pilot installed on the upstream valve. The Type 6492HM safety override pilot senses pressure downstream of the second valve and prevents pressure from rising above safe operating pressure in the event the downstream valve fails. This system is approved by ASME B31.1-1989, 122.14.2.A and can replace an ASME safety valve when vent piping is not practical and upstream steam pressure does not exceed 400 psig / 27.6 bar. Local codes and standards may require approval by an appropriate authority prior to installation.


Features

- Extended Diaphragm Service Life—Two-ply construction and dual flex points increases cycle life compared to conventional designs. Stainless steel material ensures satisfactory operation at high steam temperatures.
- Resilient Seats—Valve seats are individually lapped for tight shutoff. Beveled seats ensure easy in-line lapping. Plug and valve seats are constructed of hardened stainless steel which reduces wire drawing in wet steam applications.
- Standard ANSI Face-to-Face—NPT, CL125 FF, CL150 RF, CL250 RF and CL300 RF end connections are ANSI standard face-to-face dimensions. The Type 92B main valve is also available with PN 16/25/40 RF end connections.
- Bellows Stem Guide—Pilot bellows reduces sticking from scale build-up due to boiler carryover.

- Elevated Actuator—Plugging from scale and rust is reduced as condensate will not pool in critical areas.
- Two-Path Control—Downstream pressure registers under main valve and pilot diaphragms improving response time.
- Double Post Stem Guide—Top and bottom seat guides with Inconel® bushings eliminate lateral plug instability and premature stem wear.

Figure 2. Typical Type 92B Construct

on

Specifications

This section lists the specifications for the Type 92B Pressure Reducing Valve. The following information is stamped on the nameplate of Type 92B: Type Number, Maximum Outlet Pressure, Maximum Inlet Pressure and Maximum Temperature.

Available Configurations

Pilot-operated globe-style pressure reducing valve with post guiding and flow-to-close valve plug action.

Body Sizes and End Connection Styles

See Table 1

Body Ratings and Maximum Inlet Pressures(1) See Table 3

Minimum Differential Pressures Required for Full Stroke⁽¹⁾

20 psig / 1.4 bar with Stainless steel spring; 10 psig / 0.69 bar with Inconel® spring

Maximum Outlet (Casing) Pressure

Cast iron: 150 psig / 10.3 bar or body rating limits, whichever is lower

Steel/Stainless steel: 300 psig / 20.7 bar or body

rating limits, whichever is lower

Outlet Pressure Ranges(1)

See Table 2

Flow Coefficients

See Table 5

Flow Capacities

See Table 6

Pressure Registration

External

Maximum Temperature Capabilities(1)

See Table 3

Downstream Control Line Connections

NPS 1 and 1-1/2 / DN 25 and 40: 1/4 NPT

NPS 2 / DN 50: 3/8 NPT

NPS 3 and 4 / DN 80 and 100: 1/2 NPT

Approximate Weights

See Table 7

Construction Materials

Main Valve

Body, Bottom Flange, Diaphragm Case and Diaphragm Plate: Cast iron, WCC Steel or CF8M

Stainless steel

Construction Materials (continued) Main Valve (continued)

Bottom Flange Gasket: Cast iron: Composition;

Steel/Stainless steel: Graphite Diaphragms: Stainless steel

Valve Plug: 410 or 416 Stainless steel Seat Ring: 416 Stainless steel (standard), 316 Stainless steel (seal weld option)

Valve Plug Guide Bushing: 17-4PH Stainless steel

Spring: 17-7PH Stainless steel or Inconel®
Bleed Orifice Fitting: 416 Stainless steel
Pipe Fittings: Steel or Stainless steel

Type 92B Pilot Mounting Parts

Cast iron: Copper tubing and brass fittings
Steel Body: Stainless steel tubing and corrosion

resistant steel fittings

Stainless steel Body: Stainless steel tubing

and fittings

Type 92B Pilot

Body and Spring Case: Cast iron, WCC steel,

CF8M Stainless steel

Diaphragm Plate Assembly: Aluminum, Steel and

Stainless steel

Diaphragm Gasket: Cast iron: Composition;

Steel/Stainless steel: Graphite

Diaphragm, Valve Guide, and Valve Spring:

Stainless steel

Valve Stem and Orifice: 416 Stainless steel Bellows and Bellows Retainer: Bronze (standard) or 321 Stainless steel (high temperature/Stainless

steel pilot construction)

Spring: Steel for standard spring and Stainless

steel for high temperature spring

Upper Spring Seat: Plated steel for standard construction and Stainless steel for high

temperature spring

Lower Spring Seat: Aluminum or Carbon steel

Screen: 304 Stainless steel

Check Valve Assembly: Stainless steel internal with copper housing or all Stainless steel

Inconel® is a mark owned by Special Metals Corporation.

^{1.} The pressure/temperature limits in this Bulletin or any applicable standard limitation should not be exceeded.

Table 1. Body Sizes and End Connection Styles

BODY SIZES, NPS / DN	END CONI	NECTION STYLES
BODT GIZES, IN STERN	Cast iron Body	Steel and Stainless steel Body
1 / 25	NPT	NPT, SWE ⁽¹⁾ , CL150 RF, CL300 RF
1-1/2 and 2 / 40 and 50	NPT, CL125 FF and CL250 RF	and PN 16/25/40 RF
3 and 4 / 80 and 100	CL125 FF and CL250 RF	CL150 RF, CL300 RF, PN 16 RF and PN 25/40 RF
Available in steel bodies only.		

Table 2. Outlet Pressure Ranges

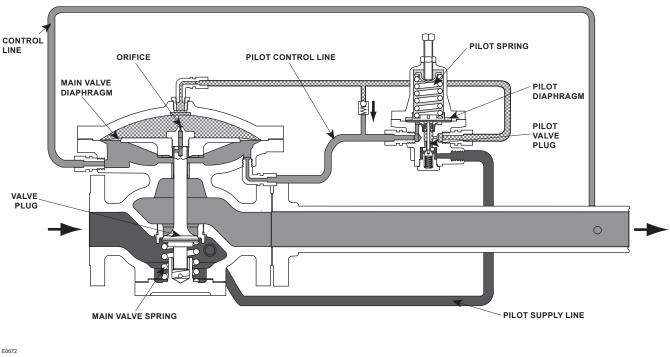

DIL OT TYPE	OUTLET P	RESSURE	SPRING WIR	E DIAMETER	SPRING FR	EE LENGTH	DADT NUMBER	201 00 2005
PILOT TYPE	psig	bar	ln.	mm	ln.	mm	PART NUMBER	COLOR CODE
Low-Pressure	2 to 6	0.14 to 0.41	0.207	5.26	2.50	63.5	1E395627022	Yellow
	5 to 15	0.34 to 1.0	0.234	5.94	2.62	66.5	1D7455T0012	Green
	13 to 25	0.90 to 1.7	0.283	7.19	2.44	62.0	1E395727192	Black
High-Pressure	15 to 30	1.0 to 2.1	0.207	5.26	2.50	63.5	1E395627022	Yellow
	25 to 75	1.7 to 5.2	0.234	5.94	2.62	66.5	1D7455T0012	Green
	70 to 150	4.8 to 10.3	0.281	7.14	2.44	62.0	1E395727192	Black
High Temperature	15 to 100	1.0 to 6.9	0.282	7.16	2.50	63.5	14B9943X012	Unpainted
	80 to 250	5.5 to 17.2	0.375	9.53	2.50	63.5	14B9942X022	Unpainted

Table 3. Maximum Inlet Pressures and Temperatures

BODY MATERIAL	END CONNECTION	MAXIMUM INL	ET PRESSURE	MAXIMUM TEMPERATURE		
		psig	bar	°F	°C	
	NPT	250	17.2	406	208	
Cast iron	CL125 FF	125	8.6	353	178	
	CL250 RF	250	17.2	406	208	
	NPT	300	20.7	450	232	
	SWE	300	20.7	450	232	
	CL150 RF	185	12.8	450	232	
Steel	CL300 RF	300	20.7	600	316(1)	
	PN 16/25/40 RF (NPS 1, 1-1/2, 2 and 3 / DN 25, 40, 50 and 80)	300	20.7	450	232	
	PN 16 RF (NPS 4 / DN 100)	185	12.8	450	232	
	PN 25/40 RF (NPS 4 / DN 100)	300	20.7	450	232	
	NPT	300	20.7	450	232	
	CL150 RF	175	12.1	450	232	
Stainless steel	CL300 RF	300	20.7	450	232	
Stairliess steel	PN 16/25/40 RF (NPS 1, 1-1/2, 2 and 3 / DN 25, 40, 50 and 80)	300	20.7	450	232	
	PN 16 RF (NPS 4 / DN 100)	175	12.1	450	232	
	PN 25/40 RF (NPS 4 / DN 100)	300	20.7	450	232	

Table 4. Minimum Differential Pressures for Safety Override System

TYPE	SPRING	RANGE	SPRING COLOR	MINIMUM PRESSURE AT WHICH
TIPE	psig	bar	SPRING COLOR	MONITORING PILOT CAN BE SET
	10 to 30	0.69 to 2.1	Yellow	10 psig / 0.69 bar over normal downstream pressure
6492HM	25 to 75	1.7 to 5.2	Green	10 psig / 0.69 bar over normal downstream pressure
	70 to 150	4.8 to 10.3	Black	15 psig / 1.0 bar over normal downstream pressure
6492HTM	15 to 100	1.0 to 6.9	Unpainted	10 psig / 0.69 bar over normal downstream pressure
0492HTW	80 to 250	5.5 to 17.2	Unpainted	25 psig / 1.7 bar over normal downstream pressure

INLET PRESSURE
OUTLET PRESSURE
ATMOSPHERIC PRESSURE
LOADING PRESSURE

Figure 3. Type 92B Operational Schematic

Principle of Operation

Refer to Figure 3. Compression of the pilot spring pushes diaphragm down and holds pilot valve plug open. Outlet pressure is changed by varying the amount of pilot spring compression.

When steam enters the inlet of the valve, it also enters the pilot supply line and flows through the open pilot valve to the top of the main diaphragm. The force created by this steam pressure on the diaphragm overcomes the force of the main valve spring opening the valve plug and allowing steam to flow downstream. Downstream pressure registers under the main diaphragm through the control line and tends to balance the diaphragm. Steam from the downstream system also registers under the pilot diaphragm through line. Pressure forces the diaphragm upward, permitting the pilot valve plug to move toward the closed position. Flow of steam to the top of the main diaphragm is thereby reduced and the pressure on main diaphragm drops due to the bleed through the orifice. The main valve moves toward the closed position, allowing only enough steam flow to satisfy downstream requirements.

When steam demand increases, the downstream pressure decreases below the setting of the pilot spring. The pilot opens to increase the pressure on the main diaphragm. The main valve opens to increase the flow downstream. Conversely, if the steam demand decreases, the downstream pressure increases and the pilot reacts to decrease the pressure on top of the main diaphragm. The main valve throttles toward the closed position and the steam flow decreases. Thus, through the combination of pilot and main valve operation, control of the downstream steam pressure is maintained.

An internal check valve is included in all Type 92B pilots to limit differential pressure on the main valve diaphragm. In the event of a large decrease in downstream pressure, the check valve opens to relieve diaphragm loading pressure to the downstream system. The check valve cartridge assembly has a factory setting to limit differential pressure across the diaphragm to approximately 40 psid / 2.8 bar d. If diaphragm differential pressure reaches approximately 40 psid / 2.8 bar d, the check valve opens to relieve diaphragm loading pressure into the downstream

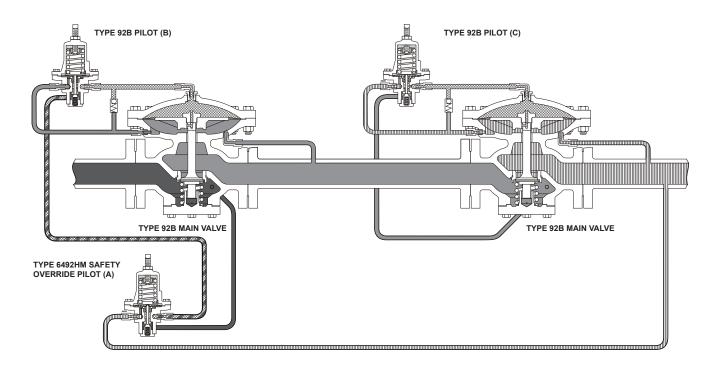


Figure 4. Safety Override System Schematic

system, thereby preventing a high differential across the diaphragm which might otherwise cause diaphragm damage. The check valve closes and normal operation resumes when the differential pressure across the diaphragm is reduced to the proper level.

Safety Override System

Refer to Figure 4. Once placed in operation, the upstream Type 92B pilot (B) senses the intermediate pressure between both valves and the Type 6492HM (A) pilot senses pressure downstream of the second valve. As demand for flow increases, intermediate pressure will fall causing the Type 92B pilot to open. As the Type 92B pilot opens, loading pressure to the main valve increases, opening the main valve.

The Type 6492HM (A) safety override pilot remains open because its setpoint is above the setpoint of the downstream valve. In the unlikely event that the

downstream valve fails open, downstream pressure will rise above the downstream valve's setpoint. This pressure is sensed by the Type 6492HM (A) safety override pilot. As downstream pressure increases the Type 6492HM (A) safety override pilot closes, reducing loading pressure to the upstream main valve, which positions the main valve to maintain desired downstream override pressure.

In the event that the upstream valve fails, the downstream valve will prevent downstream pressure from rising above safe operating levels.

It is recommended to install some type of warning system, such as a sentinel relief valve, to warn the operator that a valve has failed in the system. This will prevent prolonged operation with one valve, which could cause valve trim wear and noise associated with operation at high differential pressures.

Installation

Installation of the Type 92B is dependent on the application. As a minimum, a typical steam pressure reducing station must include a 3-valve bypass, inlet drip leg, inlet strainer (and steam separator if required) and relief valve per ASME Section VIII code. A safety override pressure reducing station can be installed in the event a relief valve is not practical as per ASME B16.122.14 standards, subject to local codes and regulations.

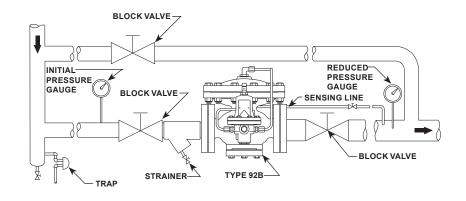
Positioning and Mounting

The Type 92B regulators are intended to be installed with their diaphragm case above the pipeline so that condensate will not collect in the cases. In order to obtain the performance given in this bulletin, connect the downstream end of the control line into a straight run of pipe. The connection should be located at least 6 pipe diameters from the valve body outlet in an unswaged pipeline or 10 pipe diameters from the swage in a swaged pipeline.

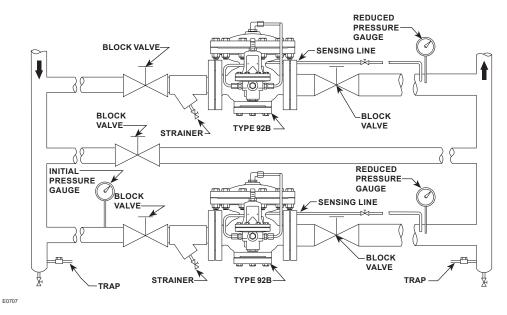
The Type 92B pilot should also be installed with the adjusting screw pointing up and the control line should be sloped with a downward pitch to ensure drainage of condensate. The body should be installed so the flow is in the same direction as the arrow on the body.

Note that the Type 92B pilot may be installed on either side of the body.

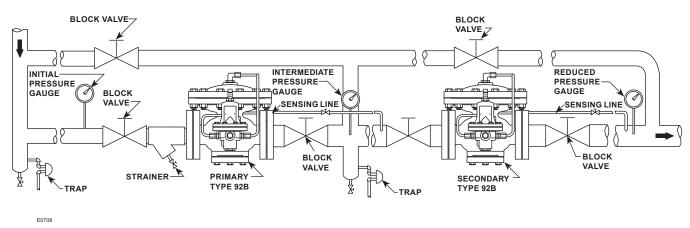
Overpressure Protection and Relief Valve Sizing


Overpressure protection is required when piping and components downstream of a steam regulating valve have a maximum allowable working pressure (MAWP) that is lower than the upstream supply pressure to the regulating valve. In some cases, the regulating valve itself may have a lower outlet pressure rating than its inlet pressure rating, which will require overpressure protection.

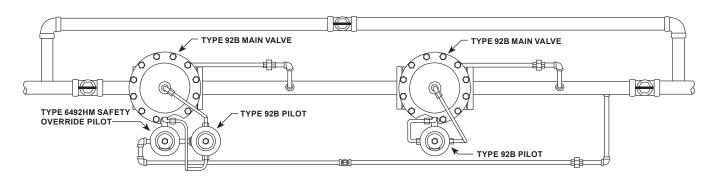
Governing codes and standards define the type and design of overpressure protection. When full flow relief valves are specified, they must relieve a maximum specified flow at a pressure not to exceed that specified by applicable codes. In North America, the governing code for most steam regulating valve installations is ASME Boiler Code, Section VIII, which may be amended by local codes or variances.


The issue in sizing stream relief valves is quantifying its maximum flow rate. Maximum flow conditions may occur under many conditions, so the entire steam system must be analyzed to make sure the maximum relief valve flow is accurate. Failure to do so may cause overpressure.

In applications where it is determined that the steam regulating valve creates maximum flow to the relief valve, several issues must be resolved prior to quantifying the flow to the relief valve.


- 1. There must be general agreement on the failure mode of the regulating valve. The Emerson Process Management Regulator Technologies, Inc. (Emerson) provides wide-open regulating coefficients to assist with sizing steam relief valves. The coefficients assume that the valve plug is at maximum travel and still in its normal orientation. Contact your local Sales Office prior to relief valve sizing in the event that there is disagreement with the mode of failure.
- Maximum steam flow must be calculated at the pressure obtained at the relief valve's full-open condition. This pressure is typically larger than a relief valve's set pressure. This pressure must be used as the outlet pressure of the steam regulating valve when calculating the maximum flow through the regulating valve.
- Maximum steam flow should be calculated from the manufacturer's recommended procedure. The Emerson recommends using either the Fisher™ steam sizing equation or IEC sizing procedure.

TYPE 92B SINGLE-STAGE INSTALLATION


TYPE 92B SINGLE-STAGE PARALLEL INSTALLATION

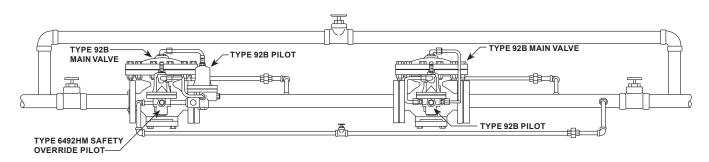
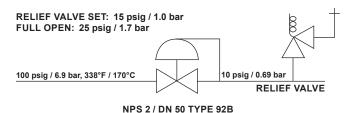

TYPE 92B TWO-STAGE INSTALLATION

Figure 5. Type 92B Typical Installations

E0706


TOP VIEW

SIDE VIEW

Figure 6. Safety Override System Installation

Example:

Determine the maximum valve flow capacity at wide-open failure.

$$Q_{\text{max(lb/hr)}} = \left[\left(\frac{C_s P_1}{1 + 0.00065 T_{sh}} \right) \right] SIN \left[\left(\frac{3417}{C_1} \right) \sqrt{\frac{\Delta P}{P_1}} \right] DEG$$

where:

Q = Steam flow rate, lb/hr

P₁ = Absolute inlet pressure, psia (P1 gauge + 14.7)

C_s = Wide-open gas sizing coefficient, see Table 5

 C_1 = Flow coefficient, see Table 5

 T_{sh} = Degrees of steam superheat at inlet, °F ΔP = Pressure drop across regulator, psia

Example Calculation:

$$Q_{\text{max(lb/hr)}} = \left[\sqrt{\frac{74 \times 114.7}{1 + 0.00065 \times 0}} \right] SIN \left[\sqrt{\frac{3417}{35}} \sqrt{\frac{75}{114.7}} \right] DEG$$

$$Q_{\text{max}} = 8,330 \text{ lb/hr} / 3778 \text{ kg/hr}$$

where:

$$C_S = 74$$
 $\Delta P = 75 \text{ psia} / 5.2 \text{ bar}$ $C_1 = 35$ $T_{sh} = 0^{\circ}\text{F}$ $P_1 = 114.7 \text{ psia} / 7.9 \text{ bar}$

Table 5. Main Valve Coefficients

BODY	SIZE			FLOW COE	FFICIENTS					IEC SIZI	NG COEFFIC	CIENTS
		Regu	lating Coeffic	cients	Wide-	Open Coeffi	cients	C₁	K _m	_	v	_
NPS	DN	C _g	C _s	C _v	C _g	C _s	C _v			F∟	Χ _τ	F _D
1 1-1/2	25 40	330 560	16.5 28	9.4 16	480 921	24 46	13.7 26.3	35 35	0.80 0.80	0.89 0.89	0.78 0.78	0.24 0.25
2 3 4	50 80 100	960 2000 2700	48 100 135	27.4 57.1 77.1	1481 3042 4515	74 152 225	42.3 86.9 129	35 35 35	0.80 0.80 0.80	0.89 0.89 0.89	0.78 0.78 0.78	0.28 0.26 0.20

Table 6. Capacities(1)

	ET SURE		LET SURE		CAPA	CITIES IN Ib/	h / kg/h OF S	ATURATED S	STEAM (BAS	ED ON 10 PE	ERCENT DR	OOP)	
	_							Body	Size				
psig	bar	psig	bar	NPS 1	/ DN 25	NPS 1-1/	2 / DN 40	NPS 2	/ DN 50	NPS 3	/ DN 80	NPS 4 /	DN 100
25	1.7	5 10 15	0.34 0.69 1.0	660 600 525	299 272 238	1060 1080 935	481 490 424	2060 2080 1860	934 943 844	3800 3850 3260	1724 1746 1479	4940 5000 4520	2241 2268 2050
50	3.4	5 10 20 30 40	0.34 0.69 1.4 2.1 2.8	1080 1080 1080 928 710	490 490 490 421 322	1830 1890 1860 1760 1660	830 857 844 798 753	3300 3390 3290 2940 2590	1497 1538 1492 1334 1175	6500 6650 6500 5740 4980	2948 3016 2948 2604 2259	8960 9110 8810 7730 6650	4064 4132 3996 3506 3016
		5 10 20	0.34 0.69 1.4	1500 1500 1500	680 680 680	2510 2620 2720	1138 1188 1234	4610 4700 4770	2091 2132 2164	9080 9180 9290	4119 4164 4214	10,900 11,200 11,300	4944 5080 5126
75	5.2	30 40 50 60	2.1 2.8 3.4 4.1	1470 1380 1240 1020	667 626 562 463	2680 2640 2380 2120	1216 1198 1080 962	4680 4590 4370 4160	2123 2082 1982 1887	8880 8470 7680 6900	4028 3842 3484 3130	10,800 10,200 9240 8280	4899 4627 4191 3756
100	6.9	5 10 20	0.34 0.69 1.4	1900 1920 1920	862 871 871	3400 3440 3460	1542 1560 1569	5710 5870 5900	2590 2663 2676	11,500 11,700 11,800	5216 5307 5352	16,100 16,400 16,400	7303 7439 7439
100	6.9	40 60 80	2.8 4.1 5.5	1920 1700 1330	871 771 603	3500 3330 2860	1588 1510 1297	5930 5650 4960	2690 2563 2250	11,800 11,000 9670	5352 4990 4386	16,500 15,200 13,000	7484 6895 5897
		5 10 20	0.34 0.69 1.4	2310 2340 2340	1048 1061 1061	4140 4170 4230	1878 1892 1919	6950 7010 7080	3152 3180 3211	13,900 14,100 14,100	6305 6396 6396	19,600 19,800 19,800	8890 8981 8981
125	8.6	40 60 80 100	2.8 4.1 5.5 6.9	2340 2340 2100 1630	1061 1061 952 739	4280 4400 4100 3250	1941 1996 1860 1474	7080 7250 6750 5400	3211 3289 3062 2449	14,200 14,400 13,700 11,300	6441 6532 6214 5126	19,800 19,800 18,500 15,600	8981 8981 8392 7076
150	10.3	20 40 60	1.4 2.8 4.1	2770 2770 2770	1256 1256 1256	5000 5070 5110	2268 2300 2318	8220 8260 8300	3728 3747 3765	16,700 16,700 16,800	7575 7575 7620	23,600 23,700 23,800	10,705 10,750 10,796
150	10.3	80 100 120	5.5 6.9 8.3	2770 2360 1950	1256 1070 884	4980 4600 4090	2259 2086 1855	8130 7740 7070	3688 3511 3207	15,900 15,200 13,700	7212 6895 6214	23,500 21,700 18,600	10,660 9843 8437
		20 40 60	1.4 2.8 4.1	3610 3610 3610	1637 1637 1637	6480 6500 6520	2939 2948 2957	10,700 10,800 10,900	4854 4899 4944	21,900 21,900 22,000	9934 9934 9979	29,500 31,000 31,200	13,381 14,062 14,152
200	13.8	80 100 120 150	5.5 6.9 8.3 10.3	3610 3610 3280 2790	1637 1637 1488 1266	6550 6250 6300 6070	2971 2835 2858 2753	11,000 10,700 10,500 10,200	4990 4854 4763 4628	22,500 21,700 20,700 19,700	10,206 9843 9390 8936	31,300 30,700 29,700 28,300	14,198 13,926 13,472 12,837

Type 92B

Table 6. Capacities(1) (continued)

INLET PRESSURE		TLET SSURE		CAPA	CITIES IN Ib/	h / kg/h OF S	SATURATED	STEAM (BAS	SED ON 10 PI	ERCENT DR	00P)	
							Body	Size				
psig bar	psig	bar	NPS 1	/ DN 25	NPS 1-1/	2 / DN 40	NPS 2	/ DN 50	NPS 3	/ DN 80	NPS 4 /	DN 100
	20	1.4	4460	2023	7850	3561	13,000	5897	27,200	12,338	37,300	16,919
	40	2.8	4460	2023	7920	3592	13,200	5988	27,300	12,383	37,800	17,146
	60	4.1	4460	2023	8100	3674	13,300	6033	27,300	12,383	38,500	17,464
250 17.2	80	5.5	4460	2023	8130	3688	13,400	6078	27,400	12,429	38,700	17,554
	100	6.9	4460	2023	8150	3697	13,400	6078	27,500	12,474	38,800	17,600
	120	8.3	4160	1887	7860	3565	12,700	5761	26,300	11,930	37,000	16,783
	150	10.3	4050	1837	6780	3075	11,500	5216	23,000	10,433	31,000	14,062
	20	1.4	5190	2354	8810	3996	15,100	6849	31,400	14,243	42,400	19,234
	40	2.8	5190	2354	8810	3996	15,100	6849	31,400	14,243	42,400	19,234
	60	4.1	5180	2350	8790	3987	15,000	6804	31,400	14,243	42,300	19,187
300 21.0	80	5.5	5150	2336	8740	3964	14,900	6759	31,200	14,152	42,100	19,096
	100	6.9	5110	2318	8670	3933	14,800	6713	30,900	14,016	41,800	18,960
	120	8.3	5040	2286	8550	3878	14,600	6623	30,500	13,835	41,200	18,688
	150	10.3	4900	2223	8310	3769	14,200	6441	29,700	13,472	40,000	18,144
	175	12.1	4730	2146	8030	3642	13,700	6214	28,600	12,973	38,700	17,554
	200	13.8	4510	2046	7650	3470	13,100	5942	27,300	12,383	36,800	16,692
	250	17.2	3830	1737	6510	2953	11,100	5035	23,200	10,524	31,400	14,243

 Table 7. Approximate Weights

BODY MATERIAL	END CONNECTION STYLES	BODY	SIZE	APPROXIMATE WEIGHTS WITH HIGH-PRESSURE PILOT ⁽¹⁾				
		NPS	DN	Ibs	kg			
	NPT	1 1-1/2 2	25 40 50	55 73 105	25 33 48			
Cast iron	CL125 FF	1-1/2 2 3 4	40 50 80 100	77 110 175 243	35 50 79 110			
	CL250 RF	1-1/2 2 3 4	40 50 80 100	83 115 190 263	38 52 86 119			
	NPT	1 1-1/2 2	25 40 50	65 89 122	29 40 55			
Steel or Stainless steel	CL150 RF, PN 16 RF	1 1-1/2 2 3 4	25 40 50 80 100	77 95 132 220 285	35 43 60 100 129			
	CL300 RF, PN 16/25/40 RF, PN 25/40 RF	1 1-1/2 2 3 4	25 40 50 80 100	82 102 137 225 305	37 46 62 102 138			

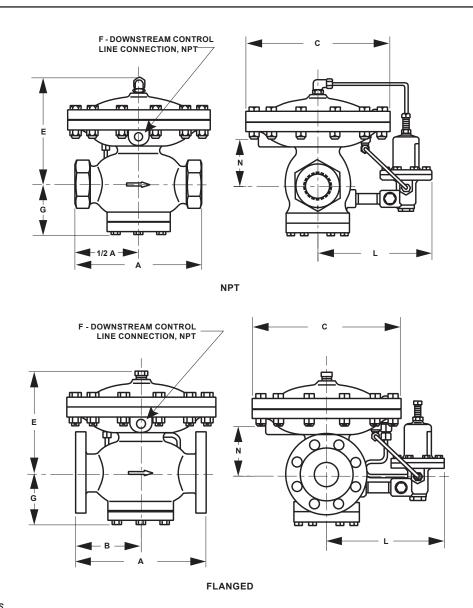


Figure 7. Dimensions

Table 8. Dimensions

во	DY											DIN	IENSIC	NS										
SIZ	ZE					A	١.															ı		
NPS	DN	NI	РТ	CL12s ar CL15	nd	CL250 ar CL30	nd	PN 1	6 RF	PN 25	/40 RF	c	;	E	Ē	F NPT	C	3	ı	N	Lo Pres: Pil	sure	Ter	sure/ gh
		ln.	mm	ln.	mm	ln.	mm	ln.	mm	In.	mm	ln.	mm	In.	mm		ln.	mm	ln.	mm	In.	mm	ln.	mm
1 1-1/2 2	25 40 50	6.50 8.00 9.25	165 203 235	7.25 8.75 10.00	184 222 254	7.75 9.25 10.50	197 235 267	7.75 9.06 10.25	197 230 260	7.75 9.06 10.25	197 230 260	9.25 10.38 11.88	235 264 302	6.81 7.00 7.75	173 178 197	1/4 1/4 3/8	3.25 3.81 4.12	82.6 96.8 105	2.81 3.94 3.91	71.4 100 ⁽²⁾ 99.3	10.25 10.69 11.25	260 272 286	8.38 8.81 9.38	213 224 238
3 4	80 100			11.75 13.88	298 353	12.50 14.50	317 368	11.81 13.56	300 344	12.21 13.88	310 353	13.88 14.88	353 378	8.94 10.12	227 257	1/2 1/2	5.19 6.44	132 164	5.50 6.38	140 162	12.12 13.12	308 333	10.25 11.25	260 286

Type 92B

Ordering Guide

Inlet Steam Conditions (Select One) Steel □ ≤ 125 psig / 8.6 bar; 353°F / 178°C □ NPT (NPS 1, 1-1/2 and 2) □ ≤ 175 psig / 12.1 bar; 450°F / 232°C □ CL150 RF Flanged □ ≤ 185 psig / 12.8 bar; 450°F / 232°C □ CL300 RF Flanged $\Box \le 250 \text{ psig} / 17.2 \text{ bar}; 406^{\circ}\text{F} / 208^{\circ}\text{C}$ □ PN 16/25/40 RF (NPS 1, 1-1/2, 2 and 3 / DN 25, 40, 50 and 80) $\Box \le 300 \text{ psig} / 20.7 \text{ bar; } 450^{\circ}\text{F} / 232^{\circ}\text{C}$ □ PN 16 RF (NPS 4 / DN 100) □ ≤ 300 psig / 20.7 bar; 600°F / 316°C □ PN 25/40 RF (NPS 4 / DN 100) Main Valve Body Size and Material (Select One) Stainless steel Cast iron □ NPT (NPS 1, 1-1/2 and 2) □ NPS 1 / DN 25 □ CL150 RF Flanged □ NPS 1-1/2 / DN 40 □ CL300 RF Flanged □ NPS 2 / DN 50 □ PN 16/25/40 RF (NPS 1, 1-1/2, 2 and 3 / DN 25, 40, 50 and 80) □ NPS 3 / DN 80 □ PN 16 RF (NPS 4 / DN 100) □ NPS 4 / DN 100 □ PN 25/40 RF (NPS 4 / DN 100) Steel Main Valve Spring (Select One) □ NPS 1 / DN 25 ☐ 17-7PH Stainless steel (standard)*** □ NPS 1-1/2 / DN 40 □ Inconel® (optional)** □ NPS 2 / DN 50 □ NPS 3 / DN 80 Pilot Material (Select One) □ NPS 4 / DN 100 □ Cast iron □ Steel Stainless steel □ Stainless steel □ NPS 1 / DN 25 □ NPS 1-1/2 / DN 40 Pilot Type and Spring Range (Select One) □ NPS 2 / DN 50 **High-Pressure** □ NPS 3 / DN 80 ☐ 15 to 30 psig / 1.0 to 2.1 bar, Yellow □ NPS 4 / DN 100 □ 25 to 75 psig / 1.7 to 5.2 bar, Green ☐ 70 to 150 psig / 4.8 to 10.3 bar, Black End Connection Style (Select One) Low-Pressure **Cast iron** □ 2 to 6 psig / 0.14 to 0.41 bar, Yellow □ NPT (NPS 1, 1-1/2 and 2) □ 5 to 15 psig / 0.34 to 1.0 bar, Green ☐ CL125 FF Flanged (NPS 1-1/2, 2, 3 and / DN 40, 50, 80 and 100) □ 13 to 25 psig / 0.90 to 1.7 bar, Black

- continued -

DN 40, 50, 80 and 100)

□ CL250 RF Flanged (NPS 1-1/2, 2, 3 and 4 /

Ordering Guide (continued)

High Temperature

- □ 15 to 100 psig / 1.0 to 6.9 bar, Unpainted
- \square 80 to 250 psig / 5.5 to 17.2 bar, Unpainted

Pilot Mounting Position (Select One)

Facing inlet side of main valve with diaphragm case up, pilot is mounted:

- ☐ On left side with pilot adjusting screw pointed up
- $\hfill\Box$ On right side with pilot adjusting screw pointed up

Options (Select One)

- ☐ Standard Adjusting Screw
- ☐ Sealed Adjusting Screw
- □ Handwheel

Safety Override System (Optional)

Type 6492HM Pilot Spring Range

- \square 10 to 30 psig / 0.69 to 2.1 bar, Yellow
- $\hfill\Box$ 25 to 75 psig / 1.7 to 5.2 bar, Green
- ☐ 70 to 150 psig / 4.8 to 10.3 bar, Black

Type 6492HTM Pilot Spring Range

- □ 15 to 100 psig / 1.0 to 6.9 bar, Unpainted
- $\hfill\Box$ 80 to 250 psig / 5.5 to 17.2 bar, Unpainted

Main Valve Replacement Parts Kit (Optional)

Yes, send one main valve replacement parts kit to match this order.

Replacement Pilot (Optional)

Yes, send one replacement pilot to match this order.

Pilot Replacement Parts Kit (Optional)

☐ Yes, send one pilot replacement parts kit to match this order.

	Regulators Quick Order Guide
* * *	Readily Available for Shipment
* *	Allow Additional Time for Shipment
*	Special Order, Constructed from Non-Stocked Parts. Consult your local Sales Office for Availability.
	e product being ordered is determined by the component with the

Steam Spo	ocificatio	a Worksh	oot
Application:	ecincatio	I WOIKSII	eet
Tag Number:			
Valve Type: ☐ Direc ☐ Pres	•	ed □Pilo ed □Dif	•
Body Material: Steel	l □ Iror	n □Sta	inless steel
Inlet/Outlet End Conne ☐ CL125 FF ☐ CL250 RI ☐ PN 16/25	Flange	☐ CL15	0 RF Flange 0 RF Flange
Inlet/Outlet Pipe Size: _		In. /	mm
Steam Conditions:	Maximum	Normal	Minimum
Inlet Pressure (psig / bar)			
Inlet Temperature (°F / °C)			
Outlet Pressure (psig / bar)			
Flow (lb/h or kg/h)			
Performance Require	d:		
Accuracy Requirements:)% □≤:	20%
	□ ≤ 30)% □≤4	40%

Facebook.com/EmersonAutomationSolutions

in LinkedIn.com/company/emerson-automation-solutions

Twitter.com/emr_automation

Emerson Automation Solutions

Americas

McKinney, Texas 75070 USA T +1 800 558 5853 +1 972 548 3574

Europe

Bologna 40013, Italy T +39 051 419 0611

Asia Pacific

Singapore 128461, Singapore T +65 6777 8211

Middle East and Africa

Dubai, United Arab Emirates T +971 4 811 8100

D101342X012 © 1980, 2020 Emerson Process Management Regulator Technologies, Inc. All rights reserved. 11/20. The Emerson logo is a trademark and service mark of Emerson

Electric Co. All other marks are the property of their prospective owners. Fisher™ is a mark owned by Fisher Controls International LLC, a business of Emerson Automation Solutions.

The contents of this publication are presented for information purposes only, and while effort has been made to ensure their accuracy, they are not to be construed as warranties or guarantees, express or implied, regarding the products or services described herein or their use or applicability. All sales are governed by our terms and conditions, which are available on request. We reserve the right to modify or improve the designs or specifications of our products at any time without notice.

Emerson Process Management Regulator Technologies, Inc. does not assume responsibility for the selection, use or maintenance of any product. Responsibility for proper selection, use and maintenance of any Emerson Process Management Regulator Technologies, Inc. product remains solely with the purchaser.

